RS309-MM Stud Mounted High Speed Fuse

AC/DC1000V 5A-800A

Basics

● Rated Voltage: AC/DC1000V ● Rated Current: 5A~800A

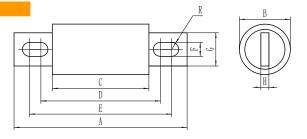
Protection: aR

● Breaking Capacity: AC100kA, DC50kA(time constant ≤15ms)

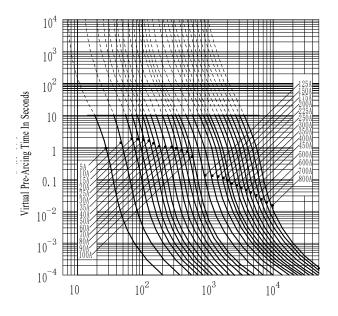
● Conform to IEC60269, safety and environmental reliability conform to ISO8820

CE certified, RoHS compliant

This fuse family adopts excellent anti-vibration and corrosion design that is suitable for various industries. It can be used for EV traction system, power converter, energy storage, charger and other applications as short-circuit, overload and back-up protection.


Note: all data in this specification are obtained under DC current condition at Current I≥20kA: time constant 10-Current I <20kA, time constant : 0.5 * 1 $^{0.3}$) with circuitry as per IEC60269/UL248.

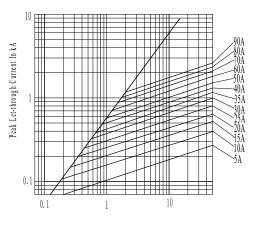
No	Model	Size	Current	I²t(A²s)		Loss	Manuellan
NO			(A)	Prearc	Clear	(W)	Mounting
1	RS309-MM-5A	2YA	5	18	110	1.5	
2	RS309-MM-10A		10	29	160	2	D # 140
3	RS309-MM-15A		15	46	215	3	Bolt M6
4	RS309-MM-20A		20	69	350	3.5	Torque 6±1N.m
5	RS309-MM-25A		25	81	500	4	02111
6	RS309-MM-30A		30	105	810	5	
7	RS309-MM-35A		35	190	1280	6.5	
8	RS309-MM-40A		40	300	1690	8	
9	RS309-MM-50A	4RC	50	450	2500	10	
10	RS309-MM-60A	4NO	60	710	4350	15	D # 140
11	RS309-MM-70A		70	850	5600	14	Bolt M8
12	RS309-MM-80A		80	1100	6670	16	Torque 12±1N.m
13	RS309-MM-90A	5RB	90	1850	11000	17	121111.111
14	RS309-MM-100A		100	2360	12700	18	
15	RS309-MM-125A		125	3500	21500	20	
16	RS309-MM-150A		150	5020	26600	28	
17	RS309-MM-175A		175	9300	41000	30	
18	RS309-MM-200A		200	16100	61500	32	
19	RS309-MM-225A	6RB	225	20100	107000	41	
20	RS309-MM-250A		250	25300	115000	48	Bolt M10
21	RS309-MM-300A		300	27100	165000	53	Torque
22	RS309-MM-350A		350	43000	232000	60	21±1N.m
23	RS309-MM-400A	7HA	400	72000	323000	65	
24	RS309-MM-450A		450	79000	310000	80	
25	RS309-MM-500A		500	106000	365000	95	
26	RS309-MM-600A		600	165000	532000	105	Bolt M13
27	RS309-MM-700A	8HA	700	326000	700000	152.5	Torque
28	RS309-MM-800A		800	423000	890000	183	35±1N.m

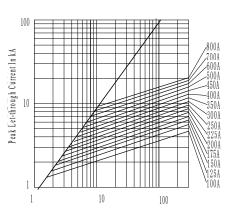

Dimension (mm) Mounting Size

Size	A±2	B±0.5	C±1	D ± 1.5	E±1.5	F±1	G±1	H±0.2
2YA	73.5	14.3	47.6	60.5	63.5	6.5	10.3	1.6
4RC	124	24	78	95	109	9	18	3.2
5RB	124	31	78	95	109	9	22	5
6RB	144	37	82	105	122	10.5	25	6
7HA	144	49	88	105	122	10.5	38	6
8HA	183	62	88	119.5	152	13.5	50	10

Characteristic Curves

Time-Current Curves




Prospective Current In Amperes

Peak Let-Through

Prospective Current In kA

Prospective Current In kA

Transport and Storage

Transpor

Avoid rain/snow or mechanical damage during transportation.

Storage

Storage temp: -40 °C \sim 120°C. Maximum 90% RH at 40°C; Package storage: -40°C \sim 70°C, Maximum 90% RH, no dewing

Normal Operation

Correction is not required under normal conditions

For other conditions, if they are within tolerable range, certain correction measures may be required.

If conditions are beyond tolerable range, please consult our team for evaluation and testing.

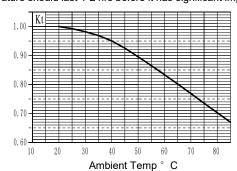
Long term operation current is recommended to be 80% of rated current.

Ambient Temperature

Normal Condition

-5°C ~ 40°C

Tolerable Range


-40°C ~125°C

Ambient temperature correction: operating below -5°C, resulting longer pre-arc time under small overcurrent and slightly increased rated current. In this case, often there is no need to enlarge rated current If above 40°C, rated current is corrected as per factor -Kt

Note 1: Kt value has considered safety margin of rated current during normal operation Note 2: ambient temperature should last 1-2 hrs before it has significant impact on fuse

Altitude

Normal Condition Below 2000m Tolerable Condition up to 4500m

Correction: higher altitude would affect insulation and dissipation, also changes air pressure.

- a) For every 100m higher, fuse temperature rise increases by 0.1-0.5k
- b) For every 100m higher, ambient temperature drops by 0.5k approximately
- c) Normally for fuses in open environment, altitude condition is negligible
- d) For closed environment, if ambient temperature inside remains almost stable under different altitude,

If exceed 40°C, fuse should be degraded. For every 1000m, rated current should be degraded by 2%-5%

Note: for any series, larger rated fuse should use higher degrade %, and lower degrade % for smaller one. Air Insulation Strength (Breakdown)

a) Air insulation reduces with higher altitude. For 2000-4500m, decreases by 12-15% for every 1000m.

Data above is obtained from GB/T16935.1. Thus adjustment to insolation space is necessary

- b) Space between fuse terminals is often much larger than specified value in standard (GB/T16935.1).
- c) User should consider altitude impact on spacing between fuse and other component, earthing etc.

Atmosphere

Normal Condition

Clean atmosphere, maximum 50% RH at 40°C

Higher RH is allowed when temperature is low, e.g. maximum 90% at 20 °C

Moderate dewing may occur under temperature changes.

Tolerable Conditions

If dewing is minor, RH could be up to 95%.

Vibration Withstand

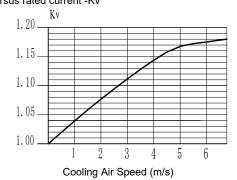
This fuse family has superior vibration performance per GB2423.10-2008 4.1.2.6 and QC/T 413-2002 standard Conform to rail transport vibration grade II

This family of fuses satisfy vehicle usage condition

For severe vibration application, please consult our team for evaluation and testing.

Pollution Class

Grade 3 pollution withstand


Mounting Condition

Normal Condition

- a) Installed in open air without any ventilation. No heat source within 1m except for conducting wires.
- b) Contact of fuses must be securely connected. Contact resistance should not affect operation.
- c) Fuse can be mounted in any orientation. If spring compression is adopted, make sure it is properly mounted to avoid harmful effect due to gravity or vibration

Forced air cooling

Forced air cooling can be used to enhance heat dissipation thus increasing rated current. Correction factor for air speed versus rated current -Kv

Safety and Maintenance

- a) Sufficient space must be ensured between installed fuses. Install insulation if necessary. This is to avoid possible inter-phase short circuit while replacing fuse.
- b) Periodic maintenance of fuses includes removal of oxidation layer and dusts.
- c) It is compulsory to replace all mechanically damaged fuses.
- d) Unless permissive (eg.fused load-switch), do not replace fuses while energized.
- e) While servicing, fuse will not generate gas, dust, noise or others that may harm the environment
- f) Metallic part of fuse can be recycled. Non-metal part can be crushed and treated as normal industry waste. It will not cause further pollution to the environment.