
Axial Lead Battery Strap Type > LT Series

LT Series

Agency Approvals

AGENCY	AGENCY FILE NUMBER
c 'FLL ' us	E183209
 TÜV	R50119583

Description

The new LT Series device provides reliable, noncycling protection against overcharging and short circuits events for rechargeable battery cells where resettable protection is desired.

Features

- RoHS compliant and lead–free
- Weldable Nickel terminals
- Compact design saves board space
- Low resistance
- Provides overcurrent protection at 100°C trip temperature

Applications

- Rechargeable battery cell protection
 - Mobile phones
 - Laptop computers

Electrical Characteristics

Part Number	_{hold}	l trip	V _{max}	I _{max} (A)	P _d max. (W)	Maximu To T	ım Time Trip		Resistance	Agency Approvals		
ran Number	(A)	(Å)	(Vdc)			Current (A)	Time (Sec.)	R _{min} (Ω)	R _{typ} (Ω)	R_{1max} (Ω)	c FL 'us	Д TÜV
24LT100	1.0	2.5	24	100	1.5	5.00	7.00	0.070	0.130	0.260	Х	Х

I hold = Hold current: maximum current device will pass without tripping in 20°C still air.

Caution: Operation beyond the specified rating may result in damage and possible arcing and flame

Temperature Rerating

Ambient Operation Temperature											
		-40°C	-20°C	0°C	20°C	40°C	50°C	60°C	70°C	85°C	
	Part Number	Hold Current (A)									
	24LT100	1.86	1.60	1.40	1.00	0.80	0.70	0.60	0.44	0.23	

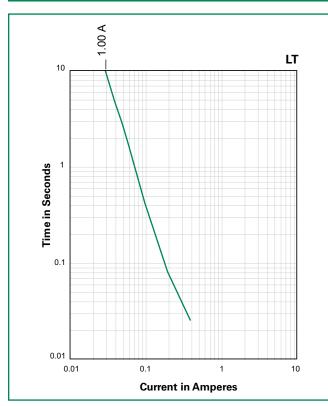
WARNING

- Users shall independently assess the suitability of these devices for each of their applications
- Operation of these devices beyond the stated maximum ratings could result in damage to the devices and lead to electrical arcing and/or fire
- These devices are intended to protect against the effects of temporary over-current or over-temperature conditions and are not intended to perform as protective devices where such conditions are expected to be repetitive or prolonged in duration
- Exposure to silicon-based oils, solvents, electrolytes, acids, and similar materials can adversely affect the performance of these PPTC devices
- . These devices undergo thermal expansion under fault conditions, and thus shall be provided with adequate space and be protected against mechanical stresses
- Circuits with inductance may generate a voltage (L di/dt) above the rated voltage of the PPTC device.

I trip = Trip current: minimum current at which the device will trip in 20°C still air.

 V_{max} = Maximum voltage device can withstand without damage at rated current (I max)

 I_{max} = Maximum fault current device can withstand without damage at rated voltage (V_{max})


P_d = Power dissipated from device when in the tripped state at 20°C still air.

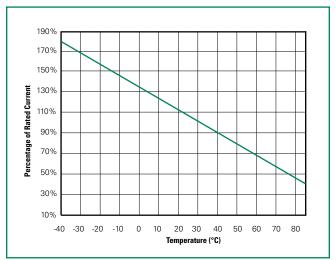
R min = Minimum resistance of device in initial (un-soldered) state.

R two = Typical resistance of device in initial (un-soldered) state.

 $R_{\rm 1max} = {\rm Maximum}$ resistance of device at 20°C measured one hour after tripping or reflow soldering of 260°C for 20 sec.

Average Time Current Curves

The average time current curves and Temperature Rerating curve performance is affected by a number or variables, and these curves provided as guidance only. Customer must verify the performance in their application.


Additional Information

Temperature Rerating Curve

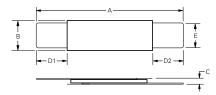
Note:

Typical Temperature rerating curve, refer to table for derating data

Physical Specifications

Terminal Material	0.13mm nominal thickness, quarter-hard Nickel
Insulating Material	Polyester tape

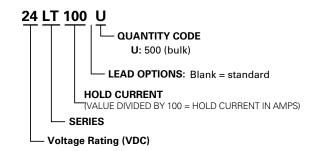
Environmental Specifications


Operating/Storage Temperature	-40°C to +85°C
Maximum Device Surface Temperature in Tripped State	125°C
Passive Aging	+70°C, 1000 hours -/+10% typical resistance change
Humidity Aging	+85°C, 85%R.H.,7days, -/+5% typical resistance change
Vibration	MIL-STD-883, Condition A, No change

POLY-FUSE® Resettable PTCs

Axial Lead Battery Strap Type > LT Series

Dimensions



	А				В			C			D1		D2		E					
Part Number	Inches		mm		Inches mm		Inches mm		in.	mm	in.	mm	Inc	hes	m	ım				
Number	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Min.	Min.	Min.	Min	Max.	Min.	Max.
24LT100	0.82	0.91	20.9	23.1	0.19	0.20	4.9	5.2	0.02	0.04	0.6	1	0.16	4.1	0.16	4.1	0.01	0.16	3.9	4.1

Part Marking System

Top Side Product Series Product Series Current Rating Lot Number (Contact Littelfuse for additional information)

Part Ordering Number System

Packaging

Part Number	Ordering Number	I _{hold} (A)	I _{hold} Code	Packaging Option	Quantity	Quantity & Packaging Codes
24LT100	24LT100U	1.0	100	Bulk	500	U