
## Axial Lead Battery Strap Type > VT Series



### VT Series





#### **Description**

The new VT Series device provides reliable, noncycling protection against overcharging and short circuits events for rechargeable battery cells where resettable protection is desired.

#### **Features**

- RoHS compliant and lead-free
- Weldable Nickel terminals
- Slim, low profile design
- Compact design saves board space
- Low resistance

### **Agency Approvals**

| AGENCY             | AGENCY FILE NUMBER |
|--------------------|--------------------|
| c <b>'91</b> 2° us | E183209            |
| <u> </u>           | R50119583          |

#### **Applications**

- Rechargeable battery cell protection
  - Mobile phones
  - Laptop computers

#### **Electrical Characteristics**

| Part Number | l <sub>hold</sub> | l hold | l trip | V <sub>max</sub> | l max       | P <sub>d</sub> | -              | mTime<br>rip            |                      | Resistance            | Agency<br>Approvals |                 |
|-------------|-------------------|--------|--------|------------------|-------------|----------------|----------------|-------------------------|----------------------|-----------------------|---------------------|-----------------|
| ran Number  | (A)               | (Ã)    | (Vdc)  | (A)              | max.<br>(W) | Current<br>(A) | Time<br>(Sec.) | R <sub>min</sub><br>(Ω) | R <sub>typ</sub> (Ω) | R <sub>1max</sub> (Ω) | c <b>71</b> 2 us    | <b>△</b><br>TÜV |
| 16VT210S    | 2.10              | 4.70   | 16     | 100              | 1.5         | 10.00          | 5.00           | 0.018                   | 0.030                | 0.060                 | Х                   | Х               |

I  $_{\rm hold}$  = Hold current: maximum current device will pass without tripping in 20°C still air.

**Caution:** Operation beyond the specified rating may result in damage and possible arcing and flame.

### **Temperature Rerating**

| Ambient Operation Temperature |                |       |      |      |               |      |      |      |      |  |  |  |
|-------------------------------|----------------|-------|------|------|---------------|------|------|------|------|--|--|--|
|                               | -40°C          | -20°C | 0°C  | 25°C | 40°C          | 50°C | 60°C | 70°C | 85°C |  |  |  |
| Part Number                   |                |       |      | Н    | old Current ( | A)   |      |      |      |  |  |  |
| 16VT210S                      | 4.10 3.50 2.90 |       | 2.90 | 2.10 | 1.60          | 1.30 | 1.00 | 0.70 | 0.10 |  |  |  |

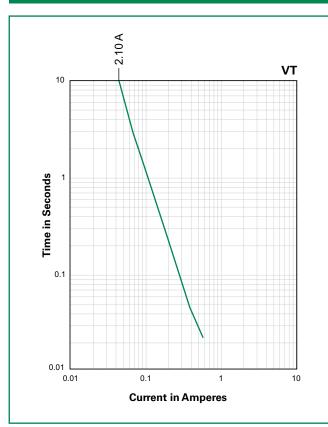
#### WARNING

- Users shall independently assess the suitability of these devices for each of their applications
- Operation of these devices beyond the stated maximum ratings could result in damage to the devices and lead to electrical arcing and/or fire
- These devices are intended to protect against the effects of temporary over-current or over-temperature conditions and are not intended to perform as protective devices where such conditions are expected to be repetitive or prolonged in duration
- Exposure to silicon-based oils, solvents, electrolytes, acids, and similar materials can adversely affect the performance of these PPTC devices
- These devices undergo thermal expansion under fault conditions, and thus shall be provided with adequate space and be protected against mechanical stresses.
- Circuits with inductance may generate a voltage (L di/dt) above the rated voltage of the PPTC device.

I  $_{\mathrm{trip}}$  = Trip current: minimum current at which the device will trip in 20°C still air.

V  $_{\rm max}$  = Maximum voltage device can withstand without damage at rated current (I max)

 $I_{max}$  = Maximum fault current device can withstand without damage at rated voltage  $(V_{max})$ 


P  $_{_{\rm d}}$  = Power dissipated from device when in the tripped state at 20°C still air.

R min = Minimum resistance of device in initial (un-soldered) state.

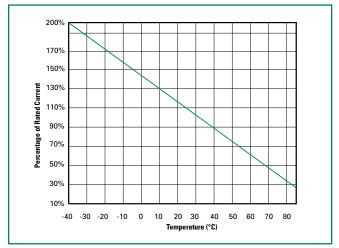
R  $_{\rm typ}$  = Typical resistance of device in initial (un-soldered) state.

R  $_{\rm 1max}$  = Maximum resistance of device at 20°C measured one hour after tripping or reflow soldering of 260°C for 20 sec.

## **Average Time Current Curves**



The average time current curves and Temperature Rerating curve performance is affected by a number or variables, and these curves provided as guidance only. Customer must verify the performance in their application.


### **Additional Information**







### **Temperature Rerating Curve**

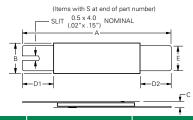


Note:

Typical Temperature rerating curve, refer to table for derating data

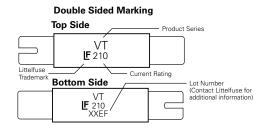
### **Physical Specifications**

| Terminal Material   | 0.13mm nominal thickness, quarter-hard<br>Nickel |
|---------------------|--------------------------------------------------|
| Insulating Material | Polyester tape                                   |

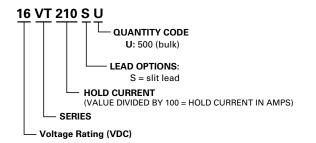

### **Environmental Specifications**

| Operating/Storage<br>Temperature | -40°C to +85°C                                                                     |
|----------------------------------|------------------------------------------------------------------------------------|
| Passive Aging                    | +70°C, 1000 hours,<br>-/+10% typical resistance change                             |
| Humidity Aging                   | +85°C, 85%R.H., 7 days,<br>-/+5% typical resistance change                         |
| Thermal Shock                    | MIL-STD-202, Method 107,<br>+85°C/-40°C 20 times<br>-30% typical resistance change |
| Vibration                        | MIL-STD-883, Method 2007,<br>Condition A, No change                                |

# Axial Lead Battery Strap Type > VT Series




### **Dimensions**




|             |      |      | Α     |       |      | E    | 3    |      |      | (    |      |      |      |      | D1  |     | D2   |      |     |     | Е    |      |       |      |
|-------------|------|------|-------|-------|------|------|------|------|------|------|------|------|------|------|-----|-----|------|------|-----|-----|------|------|-------|------|
| Part Number | Inc  | hes  | m     | m     | Inc  | hes  | mı   | m    | Inc  | hes  | m    | m    | Incl | hes  | m   | m   | Incl | hes  | m   | m   | Inc  | hes  | es mm |      |
|             | Min. | Max. | Min.  | Max.  | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max  | Min | Max | Min  | Max  | Min | Max | Min  | Max  | Min   | Max  |
| 16VT210S    | 0.82 | 0.91 | 20.90 | 23.10 | 0.19 | 0.21 | 4.90 | 5.30 | 0.02 | 0.03 | 0.60 | 0.80 | 0.16 | 0.23 | 4.1 | 5.8 | 0.16 | 0.23 | 4.1 | 5.8 | 0.15 | 0.16 | 3.90  | 4.10 |

### **Part Marking System**



### **Part Ordering Number System**



### **Packaging**

| Part Number | Ordering<br>Number | I <sub>hold</sub><br>(A) | I <sub>hold</sub> Code | Packaging<br>Option | Quantity | Quantity & Packaging Codes |  |
|-------------|--------------------|--------------------------|------------------------|---------------------|----------|----------------------------|--|
| 16VT210S    | 16VT210SU          | 2.10                     | 210                    | Bulk                | 500      | U                          |  |